195 research outputs found

    DIRC-based PID for the EIC central detector

    Get PDF

    Extracting the depolarization coefficient D_NN from data measured with a full acceptance detector

    Full text link
    The spin transfer from vertically polarized beam protons to Lambda or Sigma hyperons of the associated strangeness production pp -> pK Lambda (Sigma) is described with the depolarization coefficient D_NN. As the polarization of the hyperons is determined by their weak decays, detectors, which have a large acceptance for the decay particles, are needed. In this paper a formula is derived, which describes the depolarization coefficient D_NN by count rates of a 4 pi detector. It is shown, that formulas, which are given in publications for detectors with restricted acceptance, are specific cases of this formula for a 4 pi detector.Comment: Accepted for publication by Nuclear Instruments and Methods in Physics Research Section

    Study of PANDA Barrel DIRC design options

    Get PDF

    The innovative design of the PANDA Barrel DIRC

    Get PDF
    The Barrel DIRC of the PANDA experiment at FAIR will cleanly separate pions from kaons for the physics program of PANDA. Innovative solutions for key components of the detector sitting in the strong magnetic field of the compact PANDA target spectrometer as well as two reconstruction methods were developed in an extensive prototype program. The technical design and present results from the test beam campaigns at the CERN PS in 2017 and 2018 are discussed

    Time-based simulation of the PANDA barrel DIRC

    Get PDF

    The Endcap Disc DIRC for PANDA at FAIR

    Get PDF
    The Endcap Disc DIRC for the PANDA experiment is going to provide an excellent particle identification up to particle momenta of 4 GeV/c. It covers the polar angles from 5◦ to 22◦ and guarantees a separation power of more than 3 standard deviations (s.d.) for pions and kaons in the required phase space. The simulated detector performance has been validated during several testbeam campaigns. Additionally, the transmission losses of the optical filter has been investigated to estimate the filter performance at the end of the PANDA lifetime

    High precision measurement of the associated strangeness production in proton proton interactions

    Full text link
    A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatt\'e formalism and its variation in the Dalitz plot is analyzed.Comment: accepted for publication in Eur. Phys. J.

    First Model-Independent Measurement of the Spin Triplet pΛp\Lambda Scattering Length from Final State Interaction in the pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda Reaction

    Full text link
    The pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda reaction has been measured with the COSY-TOF detector at a beam momentum of 2.7GeV/c2.7\,\mathrm{GeV}/c. The polarized proton beam enables the measurement of the beam analyzing power by the asymmetry of the produced kaon (ANKA_N^{K}). This observable allows the pΛp\Lambda spin triplet scattering length to be extracted for the first time model independently from the final-state interaction in the reaction. The obtained value is at=(2.551.39+0.72stat.±0.6syst.±0.3theo.)fma_{t} = (-2.55 ^{+0.72}_{-1.39} {}_{\textrm{stat.}} \pm 0.6_{\textrm{syst.}} \pm 0.3_{\textrm{theo.}})\mathrm{fm}. This value is compatible with theoretical predictions and results from model-dependent analyses.Comment: Revised version as accepted for publication in PR

    Status of the PANDA barrel DIRC

    Get PDF
    The PANDA experiment at the future Facility for Antiproton and Ion Research in Europe GmbH (FAIR) at GSI, Darmstadt will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Hadronic PID in the barrel region of the PANDA detector will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. The design is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. Detailed Monte Carlo simulation studies were performed for DIRC designs based on narrow bars or wide plates with a variety of focusing solutions. The performance of each design was characterized in terms of photon yield and single photon Cherenkov angle resolution and a maximum likelihood approach was used to determine the π/K separation. Selected design options were implemented in prototypes and tested with hadronic particle beams at GSI and CERN. This article describes the status of the design and R&D for the PANDA Barrel DIRC detector, with a focus on the performance of different DIRC designs in simulation and particle beams
    corecore